
Good practices guidelines in R Projects – v2.0

1

Good practices guidelines in projects

1. Rational & scope of the guideline ... 2

2. Note on text editors / IDEs ... 2

3. One folder, one project mentality .. 3

4. File system structure .. 4

5. Programming .. 7

6. Documenting and managing dependencies ... 9

7. Version control ... 10

8. Bibliographie / ressources .. 14

Authors: Grégoire Falq and Mathilde Mousset

Good practices guidelines in R Projects – v2.0

2

1. Rational & scope of the guideline

The handover of a programming project from one programmer to another is often a challenge,
and R projects at Epicentre are no exception to the rule. The challenge arise from differences
in knowledge, in working habits, lack of time…

This guideline presents a set of good computing practices that every R user in Epicentre should
adopt regardless of their current level of computational skills. The idea being to have a
‘common denominator’ in the R working habits. These practices, which encompass organizing
the file system structure (directory structure), organizing programs and programming, are
drawn from discussions with R users in Epicentre and from key literature (such as Good enough
practices in scientific computing, Wilson).

Most of the good practices presented here are easy to implement, just necessitating a change
of habits. Other tools, such as version control take a bit more time to learn. We propose
minimal good practice, but also describe some more advanced tools that you need to know
exist, so that you may choose to invest some time learning them in the future.

The aim of this document is to make cleaning, analysing and reporting or publishing data more
reproducible, robust, transparent, reusable and shareable.

What’s in there for me?

Following reproducibility / programming good practices helps with:

• Reducing the risk of performing an analysis on the wrong version of data (such as a

not up-to-date file)

• Reducing the hassle when taking over someone else project or analyses, especially if

the person is not around anymore

• Not cursing the ‘you from two years ago’, who did not document their analysis well

enough, and now you don’t find the same results anymore with the same data. Or are

they the same data?

• Making sure your code is doing the things it should be doing and let other to check it

does

• Reusing bits of your code for future projects and saving time

• Reducing the risk of making mistakes in data cleaning and analysis

• ...

We recommend R users in Epicentre to get familiar with section 3 (One folder, one project

mentality), 4 (File system structure) and 6 (Documenting and managing dependencies). Section

5 (Programming) is more a tool-box that could help you to improve your code readability.

Section 7 is a short introduction to the concept of version control.

2. Note on text editors / IDEs

It is generally advised to use a good text editor, or even an integrated development

environment (IDE) to work with R, as these tools can bring useful options, such as syntax

highlighting, advanced searching functions, keyboard shortcuts, debugging features etc.

Good practices guidelines in R Projects – v2.0

3

Many good options exist for text editors or IDE able to handle R (potentially through an

extension or two). People routinely use Rstudio, Tinn-R, VSCode, Eclipse, Vim, Emacs,

SublimeText, Notepad++, Atom etc. (for more examples, see here).

If you do not use such a tool, we strongly advise you to invest some time learning one, as it will

make your life easier. Do not hesitate to try a couple, or to see if your already favourite editor

can accommodate R. Anything is better than the basic R GUY or notepad and there are many

good options depending on your needs.

If you are unsure what to pick, it is safe to give a try to Rstudio, as it is widely used, well
documented, easy to install, and beginner friendly.

3. One folder, one project mentality

In answer to: a script called a data file in another directory, which was not transmitted to me...

It is advised to keep all data and scripts related to a given project together in a dedicated
directory with a descriptive name and a READ ME file when possible. This one folder = one
project mentality makes the project self-contained and portable, i.e. it can be moved from
computer to computer without losing parts of the scripts or data.

In answer to: I changed computer / someone gave me their analysis folder and I spent hours
changing all the paths scattered all around in several scripts.

Several easy-to-enforce steps help with this:

1) Using relative/internal paths instead of absolute paths within the project directory is a
must-do, so that paths to data and other scripts remain valid even when the project is
moved to another computer (or somewhere else in the same computer). This enables
easy communication with other R users. Note that the base R function file.path() allow
creation of paths that will work on any operating system (i.e. use file.path(“home”,
“my_project”, “data”) rather than “home/my_project/data” or
“home\\my_project\\data”).

2) Defining all paths that are needed in a script at the beginning of said script, in a
dedicated section, so that someone needing to change the paths has only one place to
look for in each script. Even better, having a “set-path.R” script sourced by other scripts
allows to have all paths in one place, which makes it fast to find and adapt.

With these easy and fast to implement steps, one has only to modify the path to the working
directory and set it to the root of the project directory once, in the set_path.R script for
example, and all the relative paths will work relative to this one absolute path.

Some tools can help with these steps. The here package allows to easily find the root of a given
project, as well as constructing operating system independent paths. If you are using Rstudio,
Projects in Rstudio have by default their working directory at the root of the project. If one uses
relative paths in scripts, one just need to give the directory containing the Rstudio project to
someone and they should be able to use the scripts directly. If you want to know more, here is
a very short introduction on relative vs absolute paths, and Rstudio projects. Using here,
especially in conjunction with Rstudio projects helps creating truly portable, self-contained
projects.

https://datascience.stackexchange.com/questions/5345/ide-alternatives-for-r-programming-rstudio-intellij-idea-eclipse-visual-stud
https://github.com/r-lib/here
https://r4ds.had.co.nz/workflow-projects.html#where-does-your-analysis-live
https://malco.io/2018/11/05/why-should-i-use-the-here-package-when-i-m-already-using-projects/
https://malco.io/2018/11/05/why-should-i-use-the-here-package-when-i-m-already-using-projects/

Good practices guidelines in R Projects – v2.0

4

In answer to: I need to import from a special directory shared with everybody working on these
data.

Sometimes, despite our best intentions, it is not possible to have a fully self-contained directory
for all the analysis. An example that many people in Epicentre will encounter is having to do an
analysis (one project!) on data generated in the department and stored in a common
Sharepoint.

For example, performing weekly analyses for Ebola monitoring and generating a sitrep: the data
are usually updated, cleaned and shared every week in a shared folder which is distinct from
the sitrep folder.

Even in this case, using the previous principles (gathering all path definitions in an easy-to-find
script or place, and using relative paths in the rest of the project) will still greatly reduce the
time needed for a new person to get going: they will need to modify the path to the Sharepoint
library, and the path to their working directory (if here is not used) but that’s all. It is advised to
leave information on the Sharepoint and how to access it/who to ask for access in the
comments or the README.

4. File system structure

4.1. General project structure

There is no single best way to organize a file system. The key is to make sure that the structure
of directories and location of files is consistent and informative, and that input data is clearly
different from outputs.

We propose here a template of file system structure in order to have a common basis for every
R user in Epicentre.

- 0-R: put scripts to work on your data. You may have specific subfolders for markdown or
officer scripts (for instance).

o R-markdown: put rmarkdown scripts to work on your data
o R-officer: put officer scripts to create reports form your data

- 1-data-raw: put raw data and metadata (except geographical data)
 Save data as originally generated (i.e. from a survey). It is tempting to overwrite raw

data files with cleaned-up versions, but faithful retention is essential for rerunning
analyses from start to finish, for recovery from analytical mishaps, and for
experimenting without fear. Consider changing file permissions to read-only or
using spreadsheet protection features so that it is harder to damage raw data by
accident or to hand edit it in a moment of weakness.

- 2-data-geo
o raw: put raw shape files data. Same comments as 1-data-raw folder
o gen: put generated shape files data

- 3-data-clean: put files generated after data cleaning or intermediate data processing, such as
cleaned data sets or simulated data

o csv
o excel
o RData

Good practices guidelines in R Projects – v2.0

5

o RDS
o …

- 4-output: put files generated after data processing, such as final results (figures, tables,
maps…).

o csv
o excel
o img
o …

- 5-report: save reports in the appropriate format folder and ‘elements’ used to generate
reports such as images (MSF/Epicentre banner), template (word template for officer…) in the
asset folder.

o assets
▪ css
▪ img
▪ template

o html
o pdf
o word

- library-user: put all the packages required for the project. You may also use renv package to
manage dependencies (see section 6).

A template of directory structure is available on Epilink in "Toolbox ‘R’ Bonnes pratiques".

A README file should be at the root of the project, explaining at minima who work on this
project, descript the projects (where data comes from, what, broadly is in there and where),
who to contact and how to modify the project.

Note: for project stored as a package, or Shiny projects, the organization may differ markedly
from the above, which is more “data analysis” centered.

4.2. The R subdirectory: organizing one’s scripts

Split your scripts into logical thematic units. For example, you might separate your code into
scripts that load data, clean data, analyse data, and produce outputs like figures, tables or
report.

Most R directories have these or a subset of these scripts:

- 0.1_master.R or 0.1_the_lord_of_the_scripts.r: contains codes to source all other programs
- 0.2_helpers.R/0.2-utils.R/0.2-functions.R: contains user functions for this project. You may

create thematic functions files for ggplot, shiny, report generation...
o 0.2.1_utils.R: put general functions
o 0.2.2_utils_cleaning.R: put functions to clean raw data
o 0.2.3_utils_report.R: put functions to design report (r-markdown, officer…)
o 0.2.4_utils_ggplot.R: put functions that are called to create ggplot objects

- 0.3_library.R: load all libraries required for the project.
- 0_setup.R: there’s also the possibility to have a unique program that loads the necessary

libraries, users functions, and lists the paths of data folders.

Good practices guidelines in R Projects – v2.0

6

- 1_import_data.R: contains codes to import raw data and possibly to clean data if data are not
too dirty (i.e. national surveillance data) otherwise cleaning data can be done in a separate
file.

- 2_clean_data.R: contains codes to clean data and finally to export cleaned dataset in a
Rdata/rda file (folder 3-data-clean).

- 3_data_prepa.R/3_summarize_data.R/3_data_munging.R contains codes to create
indicators useful for data analysis (usually data.frame/flat table).

- 4_output.R / 4_analysis.R: contains codes to create tables, figures and maps, basically all you
need for your report. This may split this program:

o 4.1_output_table.R
o 4.2_output_figure.R
o 4.3_output_map.R

- 5_report_name.Rmd: markdown program to generate a specific report.
- 5_report_name.R: officer files to generate report.

4.3. Saving code, not workspace

An important habit to take is to not save the environment (history, loaded packages, objects in
the environment). The idea of a reproductible project is that everything can be made again by
the scripts in a new session, on another computer. The corrolary of that is that it is important to
restart R regularly, to make sure that the analyses are fully reproductible.

Important objects or figures should be explicitly saved into the project folders as opposed to
implicitly kept in the environment or saved by the mouse.

Objects that are computationally intensive to generate can be produced in their own scripts and
saved using saveRDS(my_precious, here("results", "my_precious.rds")) and imported in
downstream scripts via my_precious <- readRDS(here("results", "my_precious.rds")).

And do not attach objects. Never.

From https://github.com/jennybc/debugging#readme:

“Renouncing .Rdata and restarting R often are not intrinsically important or morally superior
behaviours. They are important because they provide constant pressure for you to do the right

thing: save the source code needed to create all important artefacts of your analysis.”

A good way to enforce this is by setting the default Rstudio global options to not save the .Rdata
when you close R.

https://github.com/jennybc/debugging#readme

Good practices guidelines in R Projects – v2.0

7

5. Programming

For data management we recommend to use dplyr, tydir, magrittr packages (piping operator
%>%) that allow readable and powerful programming.

5.1. Comment your code

Challenge: How often have you revisited an old script six months down the line and not been
able to figure out what you had been doing? Or have taken on a script from a collaborator and
not been able to understand what their code is doing and why?

An easy win for making code more readable and reproducible is the liberal, and effective, use
of comments.

One good principle to adhere to is to comment the ‘why’ rather than the ‘what’. The code itself
tells the reader what is being done, it is far more important to document the reasoning behind
a particular section of code or, if it is doing something non-standard or complicated, to take
some time to describe that section of code.

Good practice :-)

- Comment your code

- Comment your code intelligently
- Break down your scripts in titled sections and navigate or fold code more easily.
- Provide a plain text description of the code, using numbered steps, and then refer to

these steps in the code using comments
- Document the inputs and outputs of each function/method, using comments or, even

better, the roxygen2 package (even if you are not creating a package).
- Use ## for comments, rather than a single # which are indented differently on different

code editors

A different way to document code, which might be very pertinent in many cases is to use
literate programming which allows to mix code and text. Options for literate programming
include Sweave (R+LateX), and more recently the wonderful Rmarkdown.

5.2. Naming

Consistent and predictable naming helps streamline writing and reviewing code, and also
increases readability: “Good coding style is like correct punctuation: you can manage without
it, butitsuremakesthingseasiertoread” (from the tidyverse style guide).

Most programming languages have official naming conventions, official in the sense that they
are issued by the organization behind the language and accepted by its users. This is not the
case with R. There exist many different naming conventions and below is a list of some of the
most common. All are in use in the R community and the example names given are all from
functions that are part of the base package.

5.2.1. Most common naming convention

We recommend using the following conventions, already used to a large extent in package
development:

https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
https://style.tidyverse.org/documentation.html

Good practices guidelines in R Projects – v2.0

8

underscore_separated

All letters are lower case and multiple words are separated by an underscore as in seq_along
or package_version. This naming convention is used for function and variable names in
tidyverse packages, as well as in many languages including C++, Perl and Ruby.

period.separated

All letters are lower case and multiple words are separated by a period. This naming convention
is unique to R and used in many core functions such as as.numeric or read.table.

lowerCamelCase

Single word names consist of lower case letters and in names consisting of more than one word
all, except the first word, are capitalized as in colMeans or suppressPackageStartupMessage.
This naming convention is used, for example, for method names in Java and JavaScript.

UpperCamelCase

All words are capitalized both when the name consists of a single word, as in Vectorize, or
multiple words, as in NextMethod. This naming convention is used for class names in many
languages including Java, Python and JavaScript.

While several conventions currently exists for R, the tidyverse style guide seem to be used by
many people, and we advise that you read it once: https://style.tidyverse.org/

5.2.2. Good practice, independent of convention

- Name your variables explicitly
- The same name should never have two uses
- Look for a compromise: the variable names must be of a reasonable size... while

remaining explicit (ex: l < lethality < number_of_death_over_total_cases)
- Never use special characters in file names, variable names or values such as éÈçôï\/#

%?!&:;,@*^ and blank spaces
- If you really need to, only use special characters when defining labels for graphics or

tables
- For dates: use the format yyyy-mm-dd, e.g. 2001-10-13 for the 13th October
- For encoding: use UTF-8 encoding whenever possible, as it guarantees that special

characters will display correctly on different computers

5.3. Writing simple code

Writing simple code is essential for enabling others (and in fact, yourself) to read and
understand your code, identify possible issues, or propose improvements. Good code should
be simple to read and understand. Here are some guidelines for producing simple, readable
code:

Good practice :-)

- use indentation to make the code readable
- write short lines (ideally less than 80 characters); many short lines are much easier to

read than a single, long line of code
- start a new line after each piping operator %>%

https://style.tidyverse.org/

Good practices guidelines in R Projects – v2.0

9

Rtudio tip: select a code portion and type Ctrl+ I to automatically reindent code.

5.4. Architecture of the R code

Good practice :-)

- Two separate instructions should be on two separate lines
- Lines should be indented to highlight the blocks making up the code
- Each closing bracket should be vertically aligned with the instruction defining the

corresponding opening bracket
- Instruction blocks or functions should be separated by lines
- Do not omit optional brackets
- All conditions should have an else, even if it is empty

5.5. Architecture of the Rmd

An Rmd file (R Markdown file) is file that mixes text and R code. It contains YAML metadata,
markdown-formatted plain text, and “chunks” of R code. When rendered (or knitted), the Rmd
file produces sophisticated data analysis document or reports in different format (html, doc,
pdf).

It is a good practice to let the first chunk to setup the script (for example set the input/output
paths and set the default options for the rendering), and the second chunk to upload and
prepare the datasets required for the analysis. The analysis starts only at the third chunk. Follow
the rule one chunk = one output (a table of a graph or a map). Equally important is to ensure
that all chunks from the third to the last one, are independent from each other. This means
that a chunk should produce the output even if you did not run the previous chunks (apar from
the first two). This approach facilitates the collaboration with your colleagues on the same Rmd
file. A colleague may work in a chunk while you are working in another one. If you see that you
repeat the same lines in different chunks, consider to put the lines in the second chunk, or
(even better) to create a function.

5.6. Miscellaneous

A few more good practice :-)

- Do not use abbreviations
- Never use a global variable. Never.
- Test your code regularly, don't write a long code to test it only at the end, it makes

debugging very difficult
- Don't try to write optimal code. Write clear and simple code. Later, when your code is up

and running, much later (maybe never), it will be time to think about optimization.
- Loops in R can often be replaced with functions from the apply family (base R) or the map

family (purr package).

6. Documenting and managing dependencies

This paragraph is taken from ‘A Guide to Reproducible Code in Ecology and Evolution’ (page
18), British Ecological Society and authors, 2017 (Guide_BEC).

https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf

Good practices guidelines in R Projects – v2.0

10

Reproducibility is also about making sure someone else can re-use your code to obtain the same
results as you.

For someone else to be able to reproduce the results included in your report, you need to provide
more than the code and the data. You also need to document the exact versions of all the
packages, libraries, and software you used, and potentially your operating system as well as
your hardware.

R itself is very stable, and the core team of developers takes backward compatibility (old code
works with recent versions of R) very seriously. However, default values in some functions
change, and new functions get introduced regularly. If you wrote your code on a recent version
of R and give it to someone who has not upgraded recently, they may not be able to run your
code. Code written for one version of a package may produce very different results with a more
recent version.

Documenting and managing the dependencies of your project correctly can be complicated.
However, even simple documentation that helps others understand the setup you used can have
a big impact. The following are three levels of complexity to document the dependencies for
your projects.

Show the packages you used With R, the simplest (but a useful and important) approach to
document your dependencies is to report the output of sessionInfo() (or
devtools::session_info()). Among other information, this will show all the packages and their
versions that are loaded in the session you used to run your analysis. If someone wants to
recreate your analysis, they will know which packages they will need to install.

Use packages that help recreate your setup. The checkpoint package in R provides a way to
download all the packages at a given date from CRAN (The Comprehensive R Archive Network,
cran.r-project.org). Thus, from the output provided by sessionInfo(), they could recreate your
setup. It, however, makes two important assumptions: all your packages were up-to-date with
CRAN at the time of your analysis; and you were not using packages that are not available from
CRAN (e.g. the development version of a package directly from a git repository).

The current way to manage packages seems to be the renv package. The renv package is a new
effort to bring project-local R dependency management to projects. Underlying the philosophy
of renv is that any of your existing workflows should just work as they did before – renv helps
manage library paths (and other project-specific state) to help isolate your project’s R
dependencies, and the existing tools you’ve used for managing R packages
(e.g. install.packages(), remove.packages()) should work as they did before.

See here for a very short tutorial.

7. Version control

The paragraphs in italic are taken from ‘A Guide to Reproducible Code in Ecology and Evolution’
(page 28), British Ecological Society and authors, 2017 (Guide_BEC).

Scripts for reproducible code evolve over time, so keeping track of the changes that you make is
important. You might need to access a specific version of your code to verify or reproduce the
analysis used for a published paper, or to identify where you introduced a change that has
caused problems in your code at a later stage.

https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/utils/remove.packages.html
https://rstudio.github.io/renv/articles/renv.html
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf

Good practices guidelines in R Projects – v2.0

11

Anyone who has wrestled with multiple versions of a document or script named by appending
the word “final” will know how quickly such naming conventions can escalate into absurdity.

Version control provides a structured and transparent means of tracking changes to code and
other files. It was designed for use in software development and it is equally applicable to
scientific programming. By recording snapshots of a project at successive points in time, you
can create a record of your project’s development while keeping your workspace clean. Version
control also facilitates collaboration when used within project teams or when contributing to
open source software projects.

Git is a good choice because it offers flexibility in how you can use it for version control. You can
use it as a stand-alone tool to manage files on your own computer and, optionally, you can use
it to connect to an external service to archive your files. Git can be used directly or through other
software such as RStudio, so it is easily integrated into your normal workflow.

Git is a distributed version control system, which means that each user interacts with a stand-
alone copy of the versioned files. This stand-alone copy is called a repository and it is usually a
folder on your computer that contains all the work for a particular paper or project. Individual
repositories are synchronised with each other by exchanging information about what changes
have been made.

Most of the good practice in this document are relatively easy to implement. They either
require learning moderately simple new tools (project mind frame, sourcing a document, or

Good practices guidelines in R Projects – v2.0

12

the two functions to use the here package), or require building new but simple habits of using
better conventions, which pay off at relatively short time scales.

Version control is slightly different in the way that most people without a programmatic
background (i.e. most of us here at Epicentre and in quantitative sciences in general) find it
scary at first. Git currently is considered one of the best tools to do version control, but because
it helps solving complex challenges (keeping tracks of versions, changes, and even work
collaboratively on documents), it has a steeper learning curve than the rest of this document.

However, like the rest of the good practices (or like learning R), learning and using git is a
gradual process and one can learn it a couple of functions at a time, with new pay-offs
associated with each steps:

1. Learn how to use a local directory and track changes on your own computer, without
collaborating with other people, without connecting to a hosting service (such as
Github). This involve installing Git and learning about five commands. => learn tracking
you own changes in a stressless situation (and benefit from being able to go back in your
history).

2. Learn how to set up an online directory linked to your local directory (on
Github/Gitlab/Bitbucket…), and how to synchronize it with your local folder (three more
commands). => Learn the two commands to synchronise stuff online and get an extra
backup independent from Sharepoint or your computer. If you change computer, clone
the repository and get the exact same scripts as the original.

3. Learn how to clone someone else’s directory and synchronize some changes with
branches. => learn how to collaborate with others.

Practicing each of these steps will bring something to your project. If you are not working on a
project where collaborating with people through Git is compulsory, it is actually a good time to
get confident using it in solo before diving in collaboration.

What softwares and website do you need:

Good practices guidelines in R Projects – v2.0

13

- Git is the version control system. You can use it locally on your computer or use it to
synchronize a folder with a host website. By default, one uses a terminal to give Git
instructions in command-line.

- You can use a Git client to avoid the command-line and perform the same actions ((at least
for the simple, super common ones). Many options exist: Github Desktop, Tortoise Git, Source
Tree, GitKraken the Git add-in in Rstudio. Quick explanation on Git clients.

- If you want to store your folder in a host website to collaborate with others, you may create
an account at Github, Gitlab, Bitbucket (and others).

Mathilde’s PepTalk

You know what else has concepts to learn, obscure native help pages, thousands of functions,
thousands of additional modules, a dedicated search engine, frustrating and esoteric error
messages, and the tolerance of a hard rock towards your typos?

R.

If you’ve learn enough R to have to read this guide, then you definitely can learn a couple of Git
functions.

As for R (an most of the things, really), you do not have to become an expert in Git to begin
using it and rip some benefits out of it!

Ressources to learn Git

Basic concepts:

- https://www.freecodecamp.org/news/an-introduction-to-git-for-absolute-beginners-
86fa1d32ff71/ : good for learning the absolute basics to track changes in one folder on you
own computer.

- https://speakerdeck.com/alicebartlett/git-for-humans

Tutorials covering both basic and more advanced subjects:

- https://tutorialzine.com/2016/06/learn-git-in-30-minutes
- https://dzone.com/articles/git-tutorial-commands-and-operations-in-git
- https://swcarpentry.github.io/git-novice/ (short course)
- https://rsjakob.gitbooks.io/git/content/chapter1.html

Cheat sheet : https://github.github.com/training-kit/downloads/github-git-cheat-sheet/

Manual versioning

If today is not the day you have the time to learn Git (or Subversion or Mercurial, other well-
known versioning tools), the minimal good practice should be to do manual versioning of your
projects as described by

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014 :

-%09https:/happygitwithr.com/git-client.html#git-client
https://www.freecodecamp.org/news/an-introduction-to-git-for-absolute-beginners-86fa1d32ff71/
https://www.freecodecamp.org/news/an-introduction-to-git-for-absolute-beginners-86fa1d32ff71/
https://speakerdeck.com/alicebartlett/git-for-humans
https://tutorialzine.com/2016/06/learn-git-in-30-minutes
https://dzone.com/articles/git-tutorial-commands-and-operations-in-git
https://swcarpentry.github.io/git-novice/
https://rsjakob.gitbooks.io/git/content/chapter1.html
https://github.github.com/training-kit/downloads/github-git-cheat-sheet/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014

Good practices guidelines in R Projects – v2.0

14

1) Add a file called CHANGELOG.txt to the project's docs subfolder (5f), and make dated
notes about changes to the project in this file in reverse chronological order (i.e., most
recent first). This file is the equivalent of a lab notebook and should contain entries
like those shown below.

2) Copy the entire project whenever a significant change has been made (5g) (i.e., one
that materially affects the results), and store that copy in a subfolder whose name
reflects the date in the area that's being synchronized. This approach results in
projects being organized as shown below.

8. Bibliographie / ressources

https://martinctc.github.io/blog/rstudio-projects-and-working-directories-a-beginner's-
guide/: good intro on structuring R projects (reading < 10min)

https://r4ds.had.co.nz/workflow-projects.html#paths-and-directories: chapter of R for data
science on R projects and workflow (reading <15min)

https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-
reproducible-code.pdf: introduction to reproductible analyses. Do not be fooled by the title,
the good practices described in this guide are as applicable in social sciences or epidemiology
as they are in ecology and evolution.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014:
Good Enough Practice for Scientific Computing: “This paper focuses on these first accessible
skills and perspectives—the "good enough" practices—for scientific computing: a minimum set
of tools and techniques that we believe every researcher can and should consider adopting.”

https://martinctc.github.io/blog/rstudio-projects-and-working-directories-a-beginner's-guide/
https://martinctc.github.io/blog/rstudio-projects-and-working-directories-a-beginner's-guide/
https://r4ds.had.co.nz/workflow-projects.html#paths-and-directories
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014

